

Exploring Martian subsurface through a new approach of monitoring Martian trace gases in future missions.

Nathan Barba, Sona Hosseini, Vlada Stamenković, Christopher Webster, Yen-Hung Wu, Tom Komarek, Ryan Woolley.

AGU Fall Meeting 2018

Current Mars trace gas science investigations

Mars Formulation - Small Spacecraft Studies

Mission: NASA Mars Atmosphere and Volatile Evolution Mission (MAVEN)

Launch Date: 2013

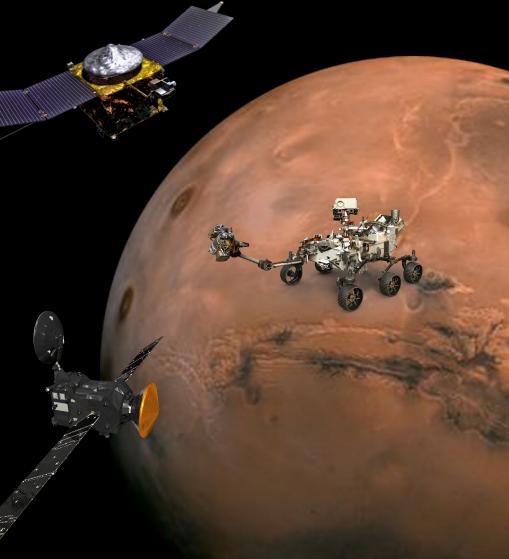
Gas Instrument: NGIMS
Spacecraft Mass: 809 kg
Location: Low Mars Orbit

Mission: NASA Mars Science Laboratory

Launch Date: 2013

Gas Instrument: TLS within SAM

Location: Gale Crater, Mars surface

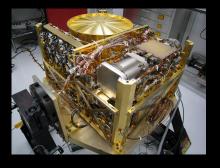

Mission: ESA ExoMars Trace Gas Orbiter

Launch Date: 2013

Gas Instrument: NOMAD

Spacecraft Mass: 3732 kg

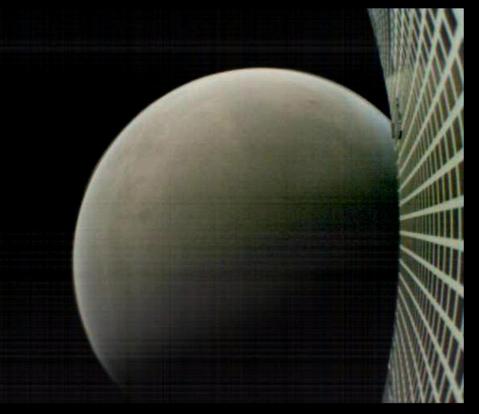
Location: Low Mars Orbit



Mars Formulation - Small Spacecraft Studies

NGIMS - Neutral Gas and Ion Mass Spectrometer Credit: NASA/GSFC

SAM – Sample Analysis at Mars Credit: NASA/JPL



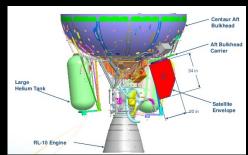
NOMAD – Nadir and occultation for Mars Discovery Credit: Belgian Institute for Space Aeronomy

	NGIMS	SAMS	NOMAD
Mass (kg)	12	33	13.5
Dimensions (cm)		55 x 42 x 31	49 x 35 x 21
Power (W)	40	800	6

Mars Formulation – Small Spacecraft Studies

- Picture shown to the right, of Mars from MarCO CubeSat
- This is the first step towards deep-space science investigation using small spacecraft.
- Next steps, will enable science performed by small spacecraft.

MarCO-B 6U CubeSat capturing an image of Mars from altitude of 6000 km.


Credit: NASA/JPL-Caltech

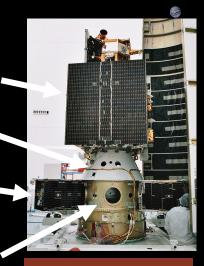
Three Key Methods to Get Small Spacecraft to Mars

Jet Propulsion Laboratory California Institute of Technology

Mars Formulation - Small Spacecraft Studies

Source: ULA ABC User's guide

Small spacecraft mounded on Aft Bulkhead Carrier (ABC)


Source: NASA

Deep Space 2 piggyback released prior to arrival on Mars Polar Lander Mission in 1999. Many small
LVs are in
development
for
Earth/Moon
use. Firefly +
solid motor
would be
capable to
reach Mars.
Others may
follow.

Primary Payload Primary Payload Adapter Secondary Payload

Payload

ESPA Ring Adapter

Science Test Payload STP-1 (USAF 2007) Payload Stack Source: Aerospace.org

	1 Piggyback on Mars Bound Mission		2 Small Launch Vehicle + Solid	3 Rideshare as Secondary P/L on ESPA
	release after launch	release prior to arrival		
Dry mass to Mars	<~80 kg for ABC	mission specific	~200 kg	<~250 kg
Launch Cost	Minimal	minimal	~ \$15 M	< \$15 M
Launch Opportunity Frequency	Once every 2 years	Once every 2 years	As needed	~10 launches to GTO per year

Areostationary Concept Case Study

System

Jet Propulsion Laboratory California Institute of Technology

Option A

and DFE

nna, and

hrusters

tweight

3FT

Compatible with ESPA/ESPA Grande
Spatial Heterodyne

Multispectral Wide Field

Hz. 8GB

s: RS422,

Mars Formulation - Small Spacecraft Studies

Features

Mass: 220kg to 350kg per spacecraft

Target: Mars – Areostationary Orbit (17,000 km)

Configuration: Single spacecraft, future constellation.

Launch: Secondary Payload on ESPA Grande

Cruise: Solar electric propulsion

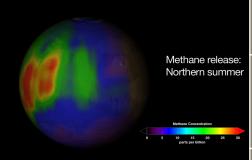
Enabling Technology: None required

Risk Class: D

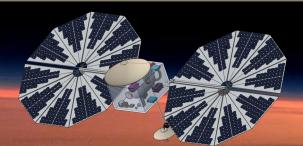
Cost: \$100 M to \$200 M per spacecraft

Lifetime: ~3 Earth years on orbit then replenished.

Science and Instruments


- Localization and diurnal concentrations of methane, other trace gases, and water.
- Spatial Heterodyne Spectrometer (JPL)
- TBD Camera

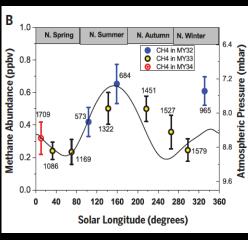
Telecom


- X-Band proximity link to surface, MSL-like rates.
- Ka-Band, Direct to Earth, MAVEN-class data rates.

	Delta-V	•	Spiral out: 1.6 k Cruise: 5.7 km/s Spiral in: 0.9 km
	Telecom	•	DTE: Ka-band de X-band backup a Optional crossli Body fixed ante solid state powe amplifier.
	Propulsion	•	2x MaSMi Hall T
	ACS	•	0.2 deg
	Power		2.1kW(BOL) ligh SA Secondary batte 250Wh capacity
er	C&DH	•	Dual-Core LEON (SPHINX), 100M NAND Interface SPI, I2C, Spacew GPIO, UART
	Mechanica	•	~1m x ~1m x ~1

	6.7		1
3 53			
		3 / III / 3	

Trace gas science concept for Mars


Mars Formulation - Small Spacecraft Studies

Finding the Sources & Sinks of Trace Gases

- What is the global variability/causality of trace gases?
- Where are sources?
- Where are sinks?
- Are they close to the surface or in the atmosphere.
- Focus on (1) methane & water, (2) isotopologues of methane and water, (3) oxygen and (4) heavier hydrocarbons (e.g., ethane).

Constrain the diurnal variability of condensable species

- Req. Objective 1: diurnal concentration of methane.
- Req. Objective 2: diurnal concentration of water.
- Objective 3: diurnal concentration of methane isotopologues.*
- Objective 4: diurnal variation of the D/H ratio.*
- Objective 5: diurnal concentration of O₂.*
- Objective 6: diurnal concentration of heavier hydrocarbons.

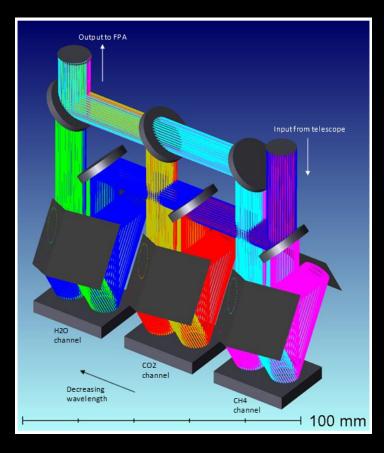
Webster + (2018)

Science measurements

- Ppb vol levels of
 - Methane & water,
 - isotopologues of methane,
 - D/H ratio,
 - Oxygen,
 - heavier hydrocarbons,
 - on less than 50x50 km,
 - Aiming for 20x20 km.
- Temperature & pressure.

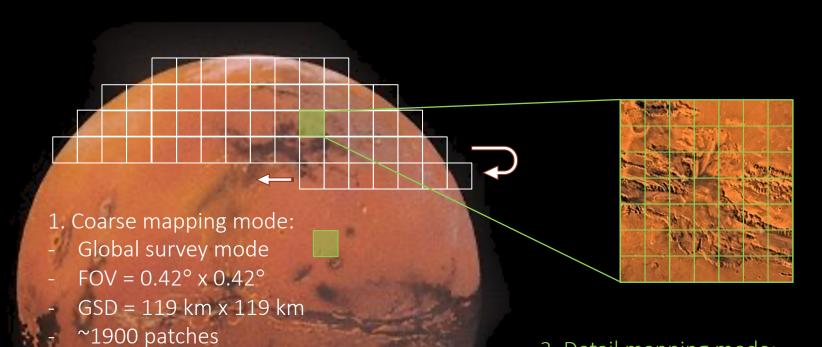
Mars Formulation – Small Spacecraft Studies

Measurement Objectives


Localize sinks and sources of methane and their daily and seasonal variability.

Measurement Requirements

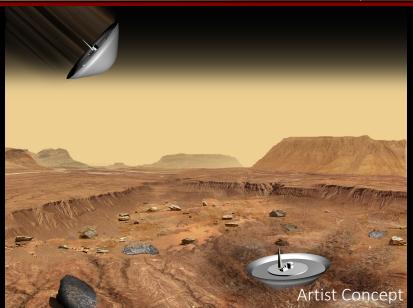
- >- Sensitivity of 0.1 ppbv.
- >- Spatial resolution for localization: threshold 60 km, baseline is 20 km.
- > Daily coverage of whole disk unless object of interest identified.

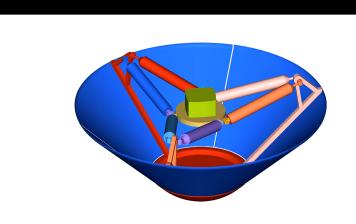

Data Products

Daily map of methane and water fluxes, threshold one Martian Year, baseline two Martian year.

Conceptual Operational Scenario for SHS

Mars Formulation – Small Spacecraft Studies


- 2. Detail mapping mode:
- Region of interest (ROI) identified
- FOV = 0.06° x 0.06°
- $GSD = 17 \text{ km} \times 17 \text{ km}$
- 49 points


- In order to characterize and localize sources and sinks of methane we need to see the whole atmospheric column down to the surface.
- We may miss emissions close to the surface which cannot be measured with orbiter missions in limb.
- Need a technically feasible and cost effective method to deliver science payloads to the surface of Mars.

Mars Surface Concept Case Study - SHIELD

Mars Formulation – Small Spacecraft Studies

- SHIELD enables the delivery of scientific payload affordably to the surface of Mars.
- Total science payload range 0.5 kg to 1 kg.
- Science payload can vary between liquid water sounders, trace gas sniffers, meteorological stations, and electromagnetic field sensors.
- Impact g (with 200mm stroke) ≈ 900 G
- Science goals of high priority for Decadal science, MEPAG, and HEO SKG's.
- Missions can consist of multiple SHIELD landers.

Mars Formulation – Small Spacecraft Studies

Nathan Barba

Jet Propulsion Laboratory

Systems Engineer

Advanced Design Engineering Group (312D)

nbarba@jpl.nasa.gov

(818) 354-2688